三、机器视觉在工业机器人中的应用
工业机器人是现代科技的主要代表技术,工业机器人以其方便精确,省时省力,而被广泛应用于家电、电子、服装、汽车、食品、等行业。随着现代科技的高速发展,高标准、高效率已经成为众多企业追求的目标,在这种发展背景下,工业机器人应运而生。
其中让笔者印象深刻的就是京东自动化机器人仓库,硕大的仓库里面成千上万的机器人不停地在货架之间来回运动,将物品分类、投放、运输。在工业机器人领域中机器视觉具有如下功能。
(1)定位和控制。现代工厂生产要求机器视觉系统能够快速,准确地找到目标物并确认其位置。然后使用机器视觉进行定位,并引导机械手臂去准确地抓取。
(2)识别。主要利用机器视觉获取图像,然后对图像进行处理、分析和理解,以识别各种状态的目标和对象,用于跟踪和收集数据。一般的机器识别系统借助照相机完成。
(3)检测。检测生产线上产品的质量,这也是取代人工最多的环节。在工业领域,主要检查包括尺寸大小检测,瓶子外观缺陷检测,瓶口缺陷检测,残次品检测等。
(4)高精度检查。在工业生产中,一些精密的电子设备零件需要较高的精度,例如计算机、手机上高度集成的电子电路板,有些可达到精度0.01mm甚至μm级,人眼无法识别这些小的元器件,因此必须使用机器来完成。
(5)分拣与搬运。现代工业生产与运转过程中,不可避免都会有一些分拣的工作,而传统利用人力进行分拣工作的方式存在较大局限,但视觉机器人的应用可以极大地提高工业生产的效率及工作精确度,进而解放了人们的双手。
机器视觉系技术在机器人的应用中起到一个核心内容的作用。机器视觉中最关键的一项就是:怎样让机器人对运动目标物进行准确识别。视觉系统技术可以解决这一难题,加入视觉系统技术,可以使机器人对目标物进行实时的运动跟踪与检测,进而准确的确定目标物的位置与方向,确保机器人对其的准确定位。
机器人视觉系统的工作主要分为4个部分:相机定位、图像分析与处理、目标物状态识别及机器人的动作操控。先利用相机定位对目标物建立运动坐标系,获取物体坐标;然后将获取的目标物分图像进行分析和处理;状态识别以图像分析为基础,对目标物的状态进行分析和处理,从而根据图像处理与分析的结果操控机器人的动作行为。
工业机器人的使用是现代工业相对于传统工业的伟大进步与发展,其解决了传统工业成本高、效率低、耗时长等缺点,将人们双手解放出来,让现代化的工业生产更加自动化、智能化。
四、机器视觉在工业控制领域的应用
现代化的工业生产大多倾向机械一体化,例如,薯片的生产,从土豆的清洗,到最后薯片的装袋、封口,都不需要人为参与。当然有的人要说这样生产出来的东西没有人情味,但是我想说机械一体化的生产方式或许将是未来所有工业生产的大趋所示,其优点不在赘述。那么,怎么才能控制机械化生产呢?这就要用到机器视觉技术来控制机器生产。
机器视觉控制器,因其具备出色的处理能力,可在10s以内高速完成最多128个点的检测,强大的处理能力可以直接影响可运行的算法以及视觉系统做出决策的速度。为了减少图像处理的时间,一些工厂现在使用同构处理来运行视觉算法。
另外,现在的一些机器视觉控制器还具有用于网络连接的专用以太网端口以及用于连接外部数据存储器的端口。通过工厂连接功能,工作人员可以实现在办公室检测产品生产,查看图像,还可以实时回放,极大的方便了工厂的生产。
这种直接进行工业一体化生产的方式在慢慢的取代传统生产方式,相信在未来的工业发展中,一大部分工厂将利用机器视觉控制实现工厂一体化生产。
五、机器视觉在工业质量检测中的应用
在现代化工业生产过程中,目标检测多种多样,市场需求相对较大。比如,检测机械零件大小是否达标、辨别条形码或包装条码、测试商品的外表缺陷、瓶口缺陷、打印缺陷等等。这些应用均需大批量测试,并且都是高精度的测试,人眼识别在这些检测中处于劣势,如果仅仅通过人工,耗时可想而知。
在啤酒瓶的生产过程中,瓶子大小以及外观是否有缺陷等这些都需要经过质量检测。一些工厂一天就会生产成千上万的啤酒瓶,如果都利用人工来处理,是让人无法胜任的。
而且一般人眼一直盯着同样的物体检测,时间长了,会造成视觉疲劳,进而导致残次品率高,工作效率低下。不仅如此,一些工厂还要花费大量成本聘请人力检测,这种落后的生产方式已经不再适合现代化生产。
利用机器视觉技术可以有效的解决这一问题,用机器检测代替了传统的人工,大批量检测可以快速完成,加快了工厂的产品生产速度;另外,减少了工厂的生产成本,提高了产品的生产效率。
总结
机器视觉技术的应用,使工业生产不在受限于人眼识别的缺陷,提高了工业检测的精度和效率,使工业生产更加的自动化和智能化。
机器视觉作为人工智能分支应用中最广泛的方向,可以应用在工业、农业、医药、军事、航天、气象、天文、交通、安全、科研等各个领域。基于机器视觉多场景应用的崛起,以及其无可替代的性能优势凸显,万亿级规模市场蓝海已经显现,行业各方加速涌入。