机器视觉技术,涉及计算机科学、人工智能、信号处理、图像处理、机器学习、光学、自动化等多个领域。
机器视觉在工业领域都有哪些应用?
近年来,随着工业智能化的迅速发展,机器视觉技术被广泛应用于工业生产各领域,其作为一种现代化检测手段,越来越受到重视。
机器视觉通过光学设备和传感器获取到目标物体的图像信息,然后将图像信息转化成数字化信息,进而通过计算机分析数据显示在电子屏幕上或者通过控制单元指导机器完成任务。机器视觉偏重于信息技术工程化和自动化,但又构建在计算机技术视觉效果方法论的基础上,它的重点是感知目标物体的位置信息、大小形态、颜色信息及存在状态等数据信息。
一、工业机器视觉产业链不断完善
当前,中国机器视觉产业仍处于发展初期,从产业链来看,可以分为上游零部件及软件、中游工业机器视觉装备、和下游系统解决方案及应用三大环节。上游零部件及软件企业整体规模实力和技术水平仍有待提高,中游工业机器视觉装备需要持续提高产品的综合性能,不断提升产品的智能化水平,下游主要应用行业在半导体、消费电子和汽车领域。
二、工业机器视觉技术产品加速迭代推动应用更加深入
政策加力支持和需求持续增长为工业机器视觉创造良好发展环境。一方面,国家和地方政府出台了一系列政策支持工业机器视觉的发展,如《“十四五”智能制造发展规划》部署了“加强自主供给,壮大产业体系新优势”等4大重点任务,并在“智能制造装备创新发展行动”中重点强调研发高分辨率视觉传感器等基础零部件和装置,体现了对工业机器视觉产业的重视和支持。
另一方面,中国国民经济延续恢复发展态势,2022年一季度全国规上工业增加值同比增长6.5%,规上工业企业利润增长8.5%,作为工业机器视觉重点应用领域的新能源汽车产量同比增长140.8%、工业机器人产量增长同比增长10.2%,下游应用领域的持续增长为机器视觉的应用带来更大的发展空间。
工业场景对机器视觉技术的需求持续推动着工业机器视觉产品向标准化、模块化方向发展。工业机器视觉客户的使用需求丰富多样,具有较大特异性,客户均希望供应商针对自身需求进行一定程度的定制优化。因此,对工业机器视觉定制化产品的开发速度直接决定了企业业绩的增长速度。
为解决这一痛点,业内领先企业大力推动产品标准化、模块化发展,从非标的产品中尽可能地组合出标准化的模块,再由标准化的模块向客户输出解决方案,由此来提高自身产品和存货的周转率,提高企业对外供给解决方案的能力,进而提高企业的运营效率。
工业机器视觉的技术水平已成为直接影响多种装备进一步智能化发展的关键因素。近年来,机器人、无人机等装备的智能化水平不断提高、应用场景不断丰富,对工业机器视觉解决方案的综合性能提出了更高、更紧迫的需求。
例如,石化巡检机器人在化工厂区巡逻的过程中,需要对复杂管线的“跑冒滴漏”等问题进行精准识别,而识别的及时性和精准性直接决定了石化巡检机器人的实用性和该类型机器人的市场前景。
又例如,在煤矸石处理产线上,机器人不仅要对煤矸石的位置、大小进行识别,还需要对重量不一、形状各异的煤矸石找出最合适的夹取位置、判断机械爪施加夹取力的大小,这样才能真正有效的代替人工作业。